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A novel high-resolution numerical method is presented for one-dimensional hyperbolic
problems based on the extension of the original Upwind Leapfrog scheme to quasi-linear
conservation laws. The method is second-order accurate on non-uniform grids in space
and time, has a very small dispersion error and computational stencil defined within one
space–time cell. For shock-capturing, the scheme is equipped with a conservative non-
linear correction procedure which is directly based on the maximum principle. Plentiful
numerical examples are provided for linear advection, quasi-linear scalar hyperbolic
conservation laws and gas dynamics and comparisons with other computational methods
in the literature are discussed.
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1. Introduction

The solution of unsteady fluid dynamics problems has been a challenge for numerical methods in computational fluid
dynamics (CFD) for decades, e.g. [25,13]. Among other classes of high-resolution methods, Flux Corrected Transport (FCT)
and Total Variation Diminishing (TVD) schemes [2,12] have been an important class of numerical methods used for the solu-
tion of ‘‘convection-dominated” problems. The development of TVD or FCT schemes has been based on a few important ideas
how to deal with the well-known dispersion and dissipation problems of Eulerian schemes. One of these ideas, after A. Har-
ten, is the introduction of anti-diffusion fluxes to an original dissipative scheme with low dispersion, e.g. the first-order
Godunov scheme [6], in order to reduce its dissipation in such a way to retain the boundness of the solution [19,35]. The
alternative approach is to start with a less dissipative but dispersive scheme, e.g. second-order central finite-differences,
and then use diffusion fluxes with non-linear flux limiters to reduce the dispersion error (e.g. [13,15]). High-order extensions
of original FCT/TVD methods are used to achieve a more delicate balance between the dispersion and dissipation error. A
standing alone subset of high-order methods is (Weighted) Essentially Non-Oscillatory schemes based on a solution-depen-
dent stencil that is composed of high-order differences based on the minimum local variation [21,28]. Another example of
upgrading high-resolution conservative methods to a high-order includes Discontinuous Galerkin (DG) methods [3,22,24].
Unlike finite-difference schemes DG is not based on extending the spatial stencil in space but uses additional degrees of free-
dom, i.e., higher-order moments of the solution, within a compact finite-element cell.

The cost and complexity of the high-order schemes is considerably higher in comparison to the standard second (‘low’)
order TVD/FCT schemes. Nevertheless, the price for using high-order non-oscillatory schemes is accepted by the computa-
tional community for the problems where the standard ‘low’-order methods require too fine grid to resolve short wave
lengths without considerable dissipation and dispersion errors. Moreover, the fact that the standard ‘low’-order shock-cap-
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turing schemes are not suitable for linear wave computations even poses a question whether second-order schemes are in
general viable to use for flow problems which are sensitive to linear wave effects.

Our goal in the present publication is to demonstrate that second-order finite-difference algorithms can still be very effi-
cient for a wide range of CFD problems. We are going to achieve this goal by introducing and promoting for CFD a new con-
servative finite-difference method, called Compact Accurately Boundary-Adjusting high-REsolution Technique (CABARET).
CABARET is based on a novel compact formulation of the second-order Upwind Leapfrog (UL) scheme [7,8,16] by introducing
separate conservation and flux variables. The independency of the conservation and flux variables is one of the key features
of the new method. Another distinct feature of CABARET in comparison with the majority of high-resolution schemes,
excluding Lax–Wendroff-type methods, is that it is fully discrete in space and time. The CABARET scheme is made non-oscil-
latory by applying a non-linear flux correction algorithm to the compact formulation of the UL scheme. The flux correction is
directly based on the maximum principle. In comparison with many high-resolution schemes based on the anti-diffusion/
diffusion flux approaches, in CABARET the non-linear flux correction is applied to the originally fully non-dissipative and
low-dispersive scheme.

The paper is organised as follows. In Section 2, CABARET is introduced for the scalar linear advection equation and its prop-
erties are analysed. Extensions of the CABARET scheme for quasi-linear scalar hyperbolic laws are presented in Section 3.1. In
Section 3.2 the CABARET extensions to the Euler equations are provided. Numerical examples are assembled in Section 4.

2. CABARET scheme for linear advection

2.1. Single-time-step and -space-step scheme

A scalar conservation law
Fig. 1.
denote
@tuþ @xf ðuÞ ¼ 0 ð1Þ
is considered on a finite-difference grid which is non-uniform in space xi+1 � xi = hi+1/2 and time tn+1 � tn = sn+1/2. Fig. 1 shows
the associated data structure on the non-uniform grid in space and time: the solid circles (labelled with letters) show the
location of conservation variable u and the open circles (labelled with numbers) show the locations of flux variable f. Note
that, contrary to a frequently used convention, the cells are labelled with fractional i-indices and the faces are labelled with
whole i-indices. Our scheme assumes that all variables are known at the nth time level, and, then, it takes a half time step
using forward-time central approximation, i.e., predictor step
uC � uE
1
2 snþ1=2

þ f4 � f5

hiþ1=2
¼ 0: ð2Þ
It is continued with another half time step by using the backward-time central-space approximation, corrector step
uA � uC
1
2 snþ1=2

þ f1 � f2

hiþ1=2
¼ 0; ð3Þ
where the fluxes f1, f2 are still to be determined. Note that by adding these two equations, one obtains a conventional flux
integral around the cell 1–2–5–4, with a trapezoidal rule evaluation of the fluxes. By symmetry, the scheme will be second-
order accurate for a sufficiently accurate evaluation of f1 and f2. We choose to evaluate these by a simple upwind extrapo-
lation carried out in an upwind manner. Let’s assume for the moment that the sign of the wave speed, @uf(u), is constant
everywhere. Then, we determine f1 = f(u1) by assuming that
Assumed data structure for the CABARET scheme for one dimension in space plus time. Solid circles denote conservation variables, open circles
flux variables.
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u1 ¼ 2uC � u5: ð4Þ
With this choice, the entire scheme (2)–(4) is time-reversible. It is also second-order accurate, regardless of the gird non-uni-
formity in space and time, and it is non-dissipative.

The predictor–corrector stages of the CABARER algorithm, (2) and (3) can be rearranged to an equivalent ‘‘delta” form,
useful for solution convergence to a steady state [17]. This form does not use the conservation variables at the whole time
levels:
uC � uG þ
1
2
ðsnþ1=2 þ sn�1=2Þ f4 � f5

hiþ1=2
¼ 0; ð5Þ
where the flux variables are computed by the second-order extrapolation (4) that does not explicitly depend on the time
step.

The algorithm (2)–(4), called CABARET [7,8] is an explicit single-step method. The scheme is conservative and stable un-
der the Courant (CFL) condition: 0 6 jcjs/h 6 1. Due to its extremely compact computational stencil CABARET retains its sec-
ond-order approximation for non-uniform spatial and temporal grids.

Schemes similar to (2)–(4) exist in the literature; they are the Upwind Leapfrog (UL) schemes first discussed by Iserlis for
linear advection [14], and later developed by Roe [26], Tran and Scheurer [34], and Kim [18] for multidimensional wave
propagation. However these schemes were neither conservative with non-uniform grids, nor based on a compact one-
space-cell one-time-step computational stencil. To see that the CABARET method reduces to the UL for the linear advection
(f = c � u,c = const) on a uniform grid in space and time, note that
uC � uE ¼ mðu5 � u4Þ and uE � uG ¼ mðu5 � u4Þ; ð6Þ
where m = cs/h is the CFL number. Hence,
uC � uE ¼ mðu5 � u4Þ ¼
1
2
ðu1 þ u5 � u4 � u8Þ ¼

1
2
ððu1 � u4Þ þ ðu5 � u8ÞÞ; ð7Þ
which is the three-time-level UL method. In comparison to the CABARET stencil (1–A–2–C–4–E–5) the UL method (1–4–5–8)
uses a double-interval computational stencil in time. In turn, in comparison to the conventional Central Leapfrog (Cross)
method
mðu6 � u4Þ ¼ ðu2 � u8Þ; ð8Þ
the UL scheme’s stencil in space is twice smaller.
An important distinction between the implementations of the CABARET and UL schemes is that the UL scheme is three-

time-level and needs to be properly initialized, otherwise a spurious mode can be excited. CABARET provides unambiguous
prediction at level (n + 1) from data at level (n). However, the same spurious mode can be excited if at the initial time step
the flux data are not consistent with the conservation variables. For consistent initialisation, the fluxes at the initial time step
can be determined by interpolation of conservation variables, or, more generally, by solving the corresponding Riemann
problem.

In addition to removing the defects of the UL, the CABARET scheme retains all of the UL good properties, such as ease of
implementation near boundaries, zero numerical dissipation and very small dispersion error.

2.2. Details of linear wave analysis

The non-staggered (UL) form of the CABARET scheme is well suited for analyzing its linear wave dissipation and disper-
sion properties. A travelling wave solution un

m � exp½ix � s � n� ik � h �m� is substituted in (7) and the resulting algebraic
equation is solved for the frequency, x = x(k � h), or x�s

c�k�h ¼ f ðk � h;CFLÞ, where f is a function of the dimensionless wave
number, k � h and Courant number, CFL = jcjs/h, to determine the dissipation Imðxðk � hÞ � sÞ – 0 and dispersion f � 1 – 0
errors as a function of wave and Courant numbers. The analysis shows that the CABARET scheme is non-dissipative
Imðxðk � hÞ � sÞ ¼ 0 for all wavenumbers �p < k � h < p and exact, f = 1 at three Courant numbers CFL = 0, 0.5 and 1.

Fig. 2 shows numerical surface of wave frequency normalised by dimensionless wavenumber, f � 1 for the CABARET
scheme (a) and two standard second-order schemes, Central Leapfrog (Cross) (b), and Lax–Wendroff (LW) (c). Details of
the CABARET dispersion surface for different Courant numbers are shown in Panels (d), (e) and (f). Apart from the two peaks
of abnormal dispersion, which correspond to high wave and small CFL numbers (e.g. CFL < 0.1) (Fig. 2(d)), the CABARET dis-
persion surface does not show more than 5–10% deviation from the correct dispersion relation at wavenumbers
�p/2 < k � h < p/2. In comparison with CABARET in the same range of CFL and wavenumbers, the dispersion error of the
conventional second-order central schemes (Fig. 2(b) and (c)) are larger by an order of magnitude. This is except the LW
scheme at high CFL numbers, e.g. CFL > 0.8, which also correspond to a small dispersion error. However, note that in
comparison with CABARET, the LW method is dissipative.

The problem of spurious dispersion peaks of the CABARET scheme at small CFL numbers can be rectified, without extend-
ing the scheme’s stencil, by adding a linear space–time dissipative term into the original non-dissipative formulation (2)–(4).
Indeed, consider replacing the extrapolation step (4) with



Fig. 2. Dispersion surfaces of (a) CABARET, (b) Cross, (c) Lax–Wendroff, and zoomed-in views of Panel (a) for (d) CFL < 0.1, (e) 0.1 < CFL < 0.5, and (f)
0.5 < CFL < 1.

Fig. 3.
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u1 ¼
2

1þ e
uC �

1� e
1þ e

u5; ð4aÞ
where 0 6 e 6 1, so that for e = 0 the extrapolation (4a) reduces to (4) and for e = 1 the scheme (2), (3) and (4a) is identical to
the first-order upwind scheme. Note that the CABARET method with linear space–time dissipation, (2), (3) and (4a) is equiv-
alent to the following modification of the UL scheme:
mðu5 � u4Þ ¼
1
2
ðð1þ eÞðu1 � u4Þ þ ð1� eÞðu5 � u8ÞÞ: ð7aÞ
For more accuracy, the dissipation parameter can be made a function of CFL number. In particular, the function
eðmÞ ¼ dð1� mÞ 1

2� m
� �2 allows to turn the dissipation off at the two CFL numbers for which the original CABARET scheme

(2)–(4) is exact. Fig. 3 shows the dispersion and dissipation surfaces of the CABARET scheme’s modification (4a) for two val-
ues of d. The use of dissipation parameter d = 0.5 (e � 1

8 for small CFL numbers) allows to completely remove the spurious
Linear wave properties of the CABARET scheme with a linear dissipative term in space and time: (a) dispersion surface for d = 0.5, (b) dissipation
for d = 0.04, notations are as in Fig. 2.
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peaks of abnormal dispersion (a). Panel (b) shows that the dissipative effect of the CABARET modification (4a) is equivalent
to a partial low-pass filtering at small CFL numbers.

As will be demonstrated in Section 4 and discussed in Appendix, the linear dissipative modification of CABARET (4a) can
be useful for computing strongly non-linear problems with centred expansion waves. A more general approach for reducing
the effect of dispersion error on the CABARET solution is discussed in Section 2.3.

To conclude this section, the dispersion properties of the CABARET scheme are compared against state-of-the-art low-dis-
persive semi-discrete finite-difference schemes. In the literature [5], it is common to compare the phase errors of finite-dif-
ference methods on a one-dimensional graph, e = e(Nk) where the number of grid points per wavelength, Nk, is inversely
proportional to the dimensionless wavenumber Nk = 2p/(k � h). The phase error, which only considers the effect of spatial dis-
cretization, e is defined as e = jK(k � h) � k � hj/p, where the quantity K(k � h) represents the ‘numerical’ spatial wavenumber
obtained by substituting the spatial part of the travelling wave solution exp[ik � h �m] into the spatial derivative @u

@x .
Note that in comparison to the full space–time analysis in this case the influence of the temporal discretisation on dis-

persion error is ignored. Hence, the dispersion analysis of semi-discrete schemes correspond to exact integration in time.
The comparison of these results with those of the fully discrete CABARET scheme is equivalent to comparing CABARET with
semi-discrete spatial schemes used together with a temporal multi-stage Runge–Kutta (RK) scheme at an optimal CFL num-
ber that is small enough for RK to converge to the exact integration in time.

In Fig. 4 we compare the dispersion error of the fully-discrete CABARET scheme at different Courant numbers against the
errors of semi-discrete finite differences including two state-of-the art high-order low-dispersion schemes used in turbulence
modeling. Results for all central schemes are taken from [5]. We find that for most Courant numbers and for a wide range of
grid resolution (7–20 points per wavelength) the dispersion error of the CABARET scheme remains below that of the conven-
tional and optimised fourth-order central finite differences and close to that of the six-order central schemes. Away from the
optimal Courant number range (CFL = 0.1), the CABARET dispersion error is similar to that of the fourth-order scheme.

For the range of grid resolutions considered in Fig. 4, the error decay rate (error slope) of the CABARET solution is between
the forth- and the second-order schemes. For CABARET, the local error slope gradually reduces from 3.6 at Nk = 2 to less than
3 for Nk > 100. This suggests that for CABARET the error convergence rate in the norm of deviation from the exact dispersion
relation is faster on coarse grids, when it is still converging to the theoretical value of 2.0.

Another important property pertaining to the numerical dispersion error is the numerical group speed (normalised by the
advection speed), cg ¼ s

c
@ðxðk�hÞÞ
@ðk�hÞ . Any deviation of cg from 1 corresponds to an error in physical wave propagation. In partic-

ular, negative values of cg lead to spurious wave reflection. In this case, all waves starting from a certain frequency are ‘‘grid
locked” and their energy is back-scattered [5]. Fig. 5 shows the numerical group speeds of the same finite-difference schemes
as in Fig. 4. It can be seen that all but the highest-order central schemes have cg < 0 for waves shorter than 4 grid points per
wavelength. In contrast, the CABARET group speed remains always positive, and the waves propagate at all frequencies. The
magnitude of the CABARET cg error is small: even for CFL = 0.1, it is similar to that of the fourth-order central differences in a
wide range of wave numbers.

2.3. Non-linear correction method based on enforcing the maximum principle

The CABARET scheme (2)–(4) is second-order, and, according to the Godunov Theorem, it is not monotone, which, in turn,
means it allows non-physical oscillations to emerge in the solution. For making the CABARET solution non-oscillatory, a sim-
ple tunable-parameter-free flux correction is introduced for the flux variables:
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Fig. 4. Phase errors of several spatial finite-difference schemes and of the CABARET scheme at different CFL numbers vs grid resolution (number of grid
points per wavelength, Nk = p/(k � h)). E2, E4, E6 denote standard central differences of the second, fourth and sixth-order, respectively, DRP denotes the
fourth-order Dispersion Relation Preserving scheme [30]; and LUI stands for a sixth-order pentadiagonal compact scheme of Pade-type [20]. CABARETx
stands for the CABARET scheme at Courant number CFL = x.
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u1 ¼ 2uC � u5;

if ðu1 > MÞ u1 ¼ M; if ðu1 < mÞ u1 ¼ m;

M ¼ Maxðu4;uE;u5Þ; m ¼ Minðu4;uE;u5Þ:
ð4bÞ
The above non-linear correction procedure is based on the maximum principle for characteristic wave that arrives at point 1
from the solution domain dependency 4–E–5, and that is approximated using the 3-point stencil (u4,uE,u5) within one cell in
space. In comparison to the standard TVD schemes, the non-linear correction algorithm is directly based on enforcing the
maximum principle on the solution rather than limiting the slopes of conservation variables. The CABARET flux correction
(4b) does not explicitly enforce monotonicity on the conservation variables. Numerical tests, as well as the theoretical stud-
ies [23], have confirmed that the conservation variable solution of the CABARET method with flux correction (4a) remains
strictly free from spurious oscillations for all Courant numbers CFL 6 0.5. The extension of the fully non-oscillatory solution
to higher CFL numbers, 0.5 < CFL < 1, is possible within the algorithm that in addition to the flux correction (4b) enforces the
maximum principle on the conservation variable as well. For example, in the algorithm [9], after the conservation variables
at mid-time-level are updated, e.g. in (2) or (5), the excess fields dC are calculated so that
dC ¼ 0;

if ðuC > Maxðu4; uE; u5ÞÞ dC ¼ uC �Maxðu4;uE;u5Þ;
if ðuC < Minðu4;uE;u5ÞÞ dC ¼ uC �Minðu4;uE;u5Þ:

ð4cÞ
The excess fields are then applied as the conservative correction fluxes to finally update the conservation variable
�uC ¼ uC � ðdC � dBÞ; ð4dÞ
where the bar indicates the newly corrected conservation variable. A disadvantage of the above CABARET modification (4c)
and (4d) is its increased complexity for non-linear problems and in the present work this type of algorithms will not be con-
sidered any further. Instead, here we will concentrate on simpler modifications of (4b).

Since the flux correction algorithm (4b) is based on approximating the maximum principle on a discrete 3-point
stencil it leads to damping of the short wave solution components that are not well enough resolved on the stencil. While
the selective damping introduced by flux limiting can be useful as a means for removing the under-resolved small scales
from the solution in non-linear problems, e.g. [11], for high-frequency linear wave propagation this effect is undesirable.
For CABARET, the dissipative effect of flux correction can be adjusted by making a slight change to the allowable
monotonicity region. The corresponding single-parameter modification of the original flux correction algorithm (4b) is
given below
u1 ¼ 2uC � u5;

if ðu1 > ð1þ a � signðMÞÞ �MÞ u1 ¼ ð1þ a � signðMÞÞ �M;

if ðu1 < ð1� a � signðmÞÞ �mÞ u1 ¼ ð1� a � signðmÞÞ �m;
M ¼ Maxðu4;uE;u5Þ; m ¼ Minðu4;uE;u5Þ;

ð4eÞ
where a P 0. The modified correction algorithm (4e) reduces to the basic flux correction algorithm (4b) for a = 0 and to the
non-dissipative CABARET scheme (4) for a ?1. As it will be shown in Section 4, the range of empirical parameter variation
is not large; its variation within 0 6 a 6 0.01 already yields very acceptable results.
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3. Quasi-linear hyperbolic equations

3.1. Scalar conservation laws

For most CFD problems the sign of the wave speed is not constant, and there are two candidate choices to consider for
each flux, e.g. f2 = f(u2)
ðu2Þþ ¼ 2uD � u6 and ðu2Þ� ¼ 2uC � u4: ð9Þ
The values in (9) are corrected if found to be outside the allowable monotonicity region of the solution, similar to (4b). The
bounds of the monotonicity region for each of the two candidate flux variables correspond to the domain dependency of
characteristic waves that arrive at the flux face over 1 time step:
mþ ¼ Minðu5;uE;u6Þ; Mþ ¼ Maxðu5;uE;u6Þ;
m� ¼ Minðu4;uF ;u5Þ; M� ¼ Maxðu4;uF ;u5Þ:

ð10Þ
For sign-constant wave speed, the choice in (9) is straightforward to make, e.g. for a positive speed the ‘‘plus” wave is
selected.

For general case, the interface fluxes could be obtained from solving a Riemann problem between the 2 candidates, ‘‘plus”
and ‘‘minus” flux states. However, in the present publication, a different approach for obtaining the solution is considered
that is based on the characteristic decomposition. Examples of application of this approach are provided in Section 4. For
the shock case, i.e., when the wavespeed in the upstream cell D is positive and the one in the downstream cell C is negative,
the solution procedure is outlined below.

Let’s first define the maximum and minimum solution values, umin and umax, which correspond to the maximum and min-
imum flux, f2 = f(u2) from the solution interval
f ðuminÞ ¼ fm and f ðumaxÞ ¼ fM ;

fm ¼ min
u22½ðu2Þþ ;ðu2Þ��

f ðu2Þ and f M ¼ max
u22½ðu2Þþ ;ðu2Þ��

f ðu2Þ: ð11Þ
Note that the maximum or minimum solution values do not correspond to the ‘‘plus” or ‘‘minus” flux values in case the max-
imum or minimum of the flux is between the two states, as it can be the case for a non-linear flux function (Section 4.2.3).

From the min and max values the cell-face variable is reconstructed according to the sign of the conservation variable
variation at the mid time level
u2 ¼
umax if uC � uD < 0;
umin if uC � uD P 0:

�
ð12Þ
The updated value of the cell-face variable in (12) corresponds to the steepest local decay of the variation of conservation
variable. Indeed, from (3) the conservation variable difference at the new time step is given by
uA � uB ¼ uC � uD þ
1
2
snþ1=2f2

1
hiþ1=2

þ 1
hi�1=2

� �
� 1

2
snþ1=2 f1

hiþ1=2
þ f3

hi�1=2

� �� �
; ð13Þ
and its variation is
dðuA � uBÞ ¼ dðuC � uDÞ þ
1
2
snþ1=2df2

1
hiþ1=2

þ 1
hi�1=2

� �
: ð14Þ
The algorithm of the flux reconstruction based on the minimal variation of conservation variable has similarity with the algo-
rithm of reconstruction of Total Variation Bounded (TVB) solution used in ENO schemes. Indeed, in the latter, the choice be-
tween two possible candidate finite-difference stencils is given to the one which is smallest by magnitude.

Note that the same procedure of reconstructing flux variables from the conservation data (12) can be used at the initiali-
sation step of the computation, where at the initial time step one may assume (u2)+ = uD and (u2)� = uC.

3.2. Gas dynamics

Let’s consider the one-dimensional Euler equations in conservative variables
@U
@t
þ @F
@x
¼ Q ;

UT ¼ ðq;qu;qEÞ; FT ¼ ðqu;qu2 þ p;quEþ upÞ; E ¼ eþ u2=2:
ð15Þ
In the above F is the flux vector of conservative variables U; q is density; u is velocity; p is pressure; e and E are internal and
total energy; Q = Q(q,e,u,x, t) is the vector of source terms, which may include viscous forces, and the equation of state
p = p(e,q) is assumed to satisfy



S.A. Karabasov, V.M. Goloviznin / Journal of Computational Physics 228 (2009) 7426–7451 7433
@p
@e
� p
q2 þ

@p
@q
¼ c2 P l0 > 0; ð16Þ
where c is the sound speed.
For cell (i + 1/2) the CABARET predictor–corrector steps (2) and (3) are
UC � UE
1
2 snþ1=2

þ F4 � F5

hiþ1=2
¼ Q ; ð17Þ
and
UA � UC
1
2 snþ1=2

þ F1 � F2

hiþ1=2
¼ Q : ð18Þ
For the system of equations, the extrapolation step (4) requires the solution to be decomposed into characteristic fields [10].
Let’s consider the characteristic form of the Euler equations
L � @V
@t
þ K � L � @V

@x
¼ eQ ð19Þ
where L and K are characteristic matrices, and V is the vector of primitive variables (q,u,p)T. The characteristic form is di-
rectly obtained from (15) in the solution region away from the shocks.

In practice, there are very few cases when the increments of characteristic fields dR = L � dV integrate to the full invariants,
however, in the discrete representation the form of the local invariants may be important. Below several choices of local Rie-
mann invariant definition are considered:

(i) Characteristic matrix is cell-wise constant
L ¼ LC ¼
0 1 ðqC � cCÞ�1

0 1 �ðqC � cCÞ�1

1 0 �ðcCÞ�2

0BB@
1CCA: ð20Þ
This leads to the vector of locally linearised Riemann invariants
RT ¼ ðuþ A � pl; u� A � pl;q� pðcCÞ�2Þ; A ¼ ðqC � cCÞ�1
; l ¼ 1: ð21Þ
Under this choice all characteristic variables are linear functions of the primitive variables that is equivalent to the
standard decomposition into simple characteristic waves, e.g. [13].

(ii) Pressure wave components of L are cell-wise constant, but the entropy wave components are variable in the cell
L ¼
0 1 ðqC � cCÞ�1

0 1 �ðqC � cCÞ�1

�cq�c 0 p�1

0B@
1CA; ð22Þ
which correspond to the following local Riemann invariants
RT ¼ ðuþ A � pl; u� A � pl; lnðp � q�cÞÞ; A ¼ ðqC � cCÞ�1
; l ¼ 1: ð23Þ
Note that in comparison to (22) the third component of the local Riemann invariant in (23) is a non-linear entropy
integral.

(iii) For the ideal gas equation of state, the characteristic matrix can be defined so that, at least in 1D case, the local Rie-
mann invariants become full invariants for isentropic flows. Indeed, assuming cell-wise constant entropy
L ¼
0 1 1ffiffi

c
p ðSCÞ

1
2cp�

cþ1
c

0 1 � 1ffiffi
c
p ðSCÞ

1
2cp�

cþ1
c

�c=q 0 1=p

0BBB@
1CCCA; SC ¼ pC � ðqCÞ

�c
; ð24Þ
yields
RT ¼ ðuþ Apl
;u� Apl

; lnðp � q�cÞÞ; A ¼ 2
ffiffifficp

c� 1
Scð Þ

1
2c; l ¼ c� 1

2c
: ð25Þ
As will be discussed in Section 4, the use of the non-linear invariants (24) and (25) results in more accurate solution
for several gas dynamics test cases.
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In each case the transformation from the local Riemann invariants back to the primary variables is given by the following
explicit relations:
Table 1
Scheme

Scheme

Order o
Numbe
Numbe
u ¼ 1
2
ðR1 þ R2Þ; p ¼ 1

2
ðR1 þ R2Þ=A

� �1=l

; q ¼ ðexpðR3Þ=pÞ�1=c
: ð26Þ
Once the solution field is decomposed into local invariants, the extrapolation step (4) is performed for each of the charac-
teristic components, separately. In each cell, the ‘‘plus” and ‘‘minus” candidate flux variables are computed, according to
the sign of their wave speed in the cell:
ðRqþ Þ1 ¼ 2ðRqÞC � ðRqÞ5;
ðRq� Þ2 ¼ 2ðRqÞC � ðRqÞ4;
q ¼ 1;2;3:

ð27Þ
The local invariants are then subjected to the non-linear correction procedure:
m 6 ðRqþ Þ1 6 M and m 6 ðRq� Þ2 6 M; ð28Þ
where the limits of the allowable monotonicity region are given by
m ¼minððRqÞ5; ðRqÞC ; ðRqÞ6Þ þ snþ1=2 � eQ q;

M ¼maxððRqÞ5; ðRqÞC ; ðRqÞ6Þ þ snþ1=2 � eQ q; q ¼ 1;2;3;
ð29Þ
where eQ q are the sources in the 1D characteristic equations. Note that in comparison to (4b) the maximum and minimum
values now include the source on right hand side of (19). The source term is calculated using the wave operator approxima-
tion to the second-order accuracy in space and first-order in time
eQ q ¼
ðRqÞC � ðRqÞC

snþ1=2=2
þ ðkqÞC �

ðRqÞ4 � ðRqÞ6
hiþ1=2

: ð30Þ
At the end of the correction procedure there are 2 sets of local invariants computed for each cell face, e.g. ðRqþ Þ2 and ðRq� Þ2.
The selection procedure of a single flux vector from the 2 candidates, including the case when the face belongs to the bound-
ary cell, is discussed in Appendix.

In the linearisation limit of the Euler equations, when the fluctuations of the flow quantities are small with respect to a
constant mean flow, the CABARET scheme decouples into the system of scalar advection Eqs. (2), (3) and (4b) for each indi-
vidual local Riemann invariant. For the non-linear local invariants (24) and (25), the CABARET algorithm based on the mod-
ified correction (4e) with a small a > 0 leads to propagation of 1D acoustic waves without attenuation.

4. Numerical examples

4.1. Linear advection

The linear advection Eq. (1) with c = 1 is solved with the following initial conditions [1]
uðxnðiÞ; 0Þ ¼ sin
2pxnðiÞ

a � h

� �
exp � lnð2Þ xnðiÞ

b � h

� �2
 !

; ða; bÞ ¼ ð8;3Þ;

� L=2 < x < L=2; L ¼ 100; h ¼ 1

ð31Þ
on a set of uniform grids xnðiÞ ¼ xnði� 1Þ þ h
2n ; n ¼ 0;1; . . . Following the literature the error is defined in the relative norm:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðu�uexact Þ

2P
u2

exact

r
.

Four schemes are considered: second-order Central Leapfrog scheme (Cross), Dispersion Relation Preserving scheme of
Tam and Webb [30], sixth-order Optimised Central scheme (OS6) of Bogey and Bailly [1], and the CABARET scheme with
the non-linear correction (2), (3) and (4b) (CABARET), which parameters are summarized in Table 1.

Fig. 6 shows the comparison between the Cross and CABARET solutions at time t = 100 at two CFL numbers, 0.2 and 0.8.
s compared in the linear advection test.

Cross DRP OS6 CABARET

f approximation 2 4 6 2
r of points per stencil 3 7 13 3
r of temporal stages 1 4 6 1
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Fig. 6. Linear advection of the localised eddy profile at t = 100, (a) CFL = 0.2 and (b) CFL = 0.8.
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It can be observed that the CABARET scheme leads to a more accurate solution in both calculations in comparison to
Cross. The difference with the Cross scheme is particularly striking at CFL = 0.2 where the dispersion error of the Cross
scheme is large, in accordance with the dispersion analysis results presented in Section 2.

Table 2 shows the error convergence results for all four central schemes against the CABARET scheme at t = 800. The solu-
tions of the central schemes are shown for their optimal CFL numbers. Estimated CPU costs to reduce the numerical error
down to about 5% for all three schemes are provided in Table 2a. The costs are calculated as a product of the grid resolution
parameter, the number of points in the spatial stencil, and the number of temporal stages of each scheme.

It can be seen that the CABARET scheme remains more accurate for linear advection of the smooth initial distribution than
the non-dissipative Cross scheme. As expected for a smooth solution, in comparison to the high-order finite-difference
schemes optimised for linear advection the accuracy of the CABARET scheme on the same grid is less. Nevertheless, the
CABARET scheme is considerably less CPU expensive per time step and its overall cost for the same solution accuracy is less
for a wide range of Courant numbers. We find it remarkable since the high-order optimised finite-difference schemes are
usually regarded as undisputed champions in efficiency for linear advection problems with smooth initial data, particularly
over shock-capturing schemes [1].

In addition to the error in relative norm, the convergence of CABARET for several CFL numbers is checked in the standard

L2 norm e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðu�uexact Þ

2

2n

q
. The results in Table 3 show that the order of convergence for CFL < 0.5 is within 1.5–1.7 and for

CFL > 0.5 it is close to 2. The same test run with CABARET, but without any flux correction, confirmed that its convergence
rate in the same norm and on the same grids is, indeed, close to 2 for the entire CFL number range 0 < CFL < 1. This suggests
that the non-linear correction introduces produces a bigger effect on the solution for smaller CFL numbers, for which the
dispersion error of CABARET is larger.
Table 2
Relative errors at t = 800.

Cross CABARET 7OS 13OS

CFL, n 0.9 0.4 0.5 0.6 0.9 0.2 0.8
0 1.98 0.878 0.410 1.39 1.43 1.30 0.077
1 1.46 0.575 0.208 1.13 1.15 0.713
2 1.04 0.217 0.104 0.420 0.421 0.082
3 0.308 0.095 0.052 0.130 0.129
4 0.092 0.034 0.026 0.044 0.045
5 0.023

Table 2a
CPU cost (number of points per stencil � number of time stages � 2n) for obtaining �5% accuracy at t = 800.

Cross CABARET 7OS 13OS

64 48 112 78



Table 3
L2 convergence of the CABARET scheme with non-linear correction for the linear advection problem.

n CFL = 0.2 CFL = 0.4 CFL = 0.6 CFL = 0.8

Error Rate Error Rate Error Rate Error Rate

0 0.146 0.134 0.205 0.217
1 0.134 0.124 0.092 0.54 0.156 0.382 0.188 0.204
2 0.090 0.576 0.038 1.29 0.050 1.64 0.074 1.35
3 0.037 1.30 0.016 1.21 0.0123 2.02 0.0185 2.00
4 0.016 1.19 0.005 1.53 0.003 2.03 0.0045 2.03
5 0.006 1.54 0.002 1.67 0.00075 2.02 0.001 2.02
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4.2. Scalar conservation laws

4.2.1. Inviscid Burger’s equation
The initial value problem for the scalar conservation law with the flux function f(u) = u2/2 is considered next. The exact

solution for the initial rectangular pulse distribution consists of a forerunning shock wave initiating from the right side of the
pulse and a linear expansion wave, which tails off from the left.

Fig. 7 shows a computed cell-face-based solution at typical time moments for the Courant number, CFL = 0.25. The num-
ber of grid points is 100. The shock is well-resolved within 1–2 computational cells and both edges of the linear expansion
wave are well captured. The analytical solution to this test problem is indistinguishable from the numerical curve. This is
because the CABARET scheme is shock-capturing and the linear expansion wave is approximated exactly by the second-or-
der extrapolation (4).

4.2.2. Buckley–Leverett equation
The Buckley–Leverett flux function f ðuÞ ¼ u2

4u2þð1�uÞ2
is considered for the same initial rectangular pulse initial data and on

the same grid. The solution behaviour is now more complex: there is an inflection point inside the solution interval
0 < u0 < 1; d2

dx2 f ðu0Þ ¼ 0, which leads to the solution structure that includes both shock and expansion wave for each, up-
stream and downstream, side of the pulse. For this problem, the strengths of the upstream and downstream shocks are
known to be about 0.44 and 0.84, respectively (e.g. [15]).

Fig. 8 shows the numerical solution of the Buckley–Leverett problem corresponding to the initial and several consecutive
time moments at Courant number CFL = 0.45. It can be seen that the fronts of the upstream and downstream shocks are well
resolved, their strengths are accurately predicted, and the edges between the expansion waves and the solution plateau in
the middle of the profile are sharply captured.
Fig. 7. Numerical solution to the inviscid Burgers problem at different time steps, (a) initial condition, (b) 60 time steps, (c) 100 time steps and (d) 150 time
steps.



Fig. 8. Numerical solution to the inviscid Buckley–Leverett problem: (a) initial condition, (b) 50 time steps, (c) 100 time steps and (d) 130 time steps.
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4.2.3. Smooth flux function with sonic points
The initial value problem for the flux function f(u) = sin(u) is considered for the following initial data
uðx;0Þ ¼
0 if x 6 0;
b � p if 0 < x 6 1;
0 if x > 1:

8><>: ð32Þ
For b > 1 the flux function of the solution has inflection points. Several cases corresponding to different values of b are con-
sidered below.

� For 0 < b 6 0.5, the wave speed is always positive, and the cell-face variables, which correspond to the local minima and
maxima of the flux function (11), are obtained from the minimum and maximum limit values of the two candidate
solutions
umax ¼maxððuþÞ2; ðu�Þ2Þ and umin ¼minððuþÞ2; ðu�Þ2Þ: ð33Þ
� With including 0.5 < b 6 1 the first sonic point appears in the solution (b = 0.5). In this case the minimum and maximum
limit values of the flux function (11) are approximated by
fM ¼ maxððfþÞ2; ðf�Þ2; ðfSÞ2Þ and f m ¼minððfþÞ2; ðf�Þ2; ðfSÞ2Þ; ð34Þ
where f+ = f(u+), f� = f(u�) and fS = f(uS) is such that df ðuÞ
du





u¼uS

¼ 0.

Note that in case of this non-linear flux function the additional value of flux (i.e., at the sonic point) is needed for obtain-
ing a more accurate approximation of the non-linear flux function limits over the solution interval. The sonic point corre-
sponds to uS = p/2 and to calculate the solution values that correspond to (35) the following procedure is used
if f m ¼ fþ; umin ¼ ðuþÞ2; if f M ¼ fþ; umax ¼ ðuþÞ2;

if f m ¼ f�; umin ¼ ðu�Þ2; if f M ¼ f�; umax ¼ ðu�Þ2;

if f m ¼ fs; umin ¼ ðusÞ2; if f M ¼ fs; umax ¼ ðusÞ2:
ð35Þ
Fig. 9 shows the numerical solution for b = 0.5 and b = 1 at typical time moments. The number of grid points in the compu-
tational domain is 100. It can be noted that the shock waves and the edges of the expansion fan are well captured in both
calculations.

For 1 < b 6 2.5, the wave speed changes its sign twice, and in order to take account for the additional inflection point, the
Eq. (35) are supplemented by



Fig. 9. Numerical solution to the sine flux function problem for (a) b = 0.5 at 60 time steps and (b) b = 1 at 40 time steps.
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if ½M > p=2� and ½m < p=2�; umax ¼ p=2;

if ½M > 3p=2� and ½m < 3p=2�; umin ¼ 3p=2;
ð36Þ
where
M ¼maxððuþÞ2; ðu�Þ2Þ and m ¼minððuþÞ2; ðu�Þ2Þ: ð37Þ
The solution method is extended to larger values of parameter b by taking into account newly emerging inflection points in a
similar way. For example, in order to account for a new maximum of the flux function under 2.5 < b 6 3.5 the Eqs. (35)–(37)
are supplemented by
if ½M > 5p=2� and ½m < 5p=2�;umax ¼ 5p=2: ð38Þ
The numerical solutions for b = 2 and 3 at a typical time moment NT = 40 are shown in Fig. 10. It can be noted, again, that all
shocks are well resolved within one cell and the edges of the expansion waves are crisply captured.

4.2.4. Non-smooth flux function with sonic points
A non-differentiable flux function f(u) = j(u � 1)2 � 1j is considered for the following initial data
uðx;0Þ ¼
0 if x 6 0;

3 if 0 < x 6 1;

0 if x > 1:

8><>: ð39Þ
In comparison with the previous case, the derivative of the flux function is discontinuous across the sonic points u = 0 and
u = 2. However, for the algorithm based on the minimum variation of conservation variables, (11) and (12), the continuity of
wave speeds is not important and the CABARET method remains equally robust and accurate. Fig. 11 shows solution snap-
shots at several typical time moments, the number of grid points is 100. As in the previous cases, all shock fronts and edges of
the expansion waves are well captured.

4.3. Gas dynamics

4.3.1. Incoming acoustic wave test
The acoustic wave is specified as a sinusoidal pressure fluctuation of small amplitude about a constant mean flow:
pðaÞ ¼ p1 þ p0; p0 ¼ ep1 sinð2px=k�xtÞ; uðaÞ ¼ u1 þ ðp� p1Þ=q1c1; qðaÞ ¼ q1
p

p1

� �1=c

;

0 6 x=L 6 1; k=Dx ¼ 14; x ¼ 2p
k

c1; e ¼ 1:e� 5; q1 ¼ 1; u1 ¼ 1; p1 ¼ 1:

ð40Þ
Fig. 10. Numerical solution to the sine flux function problem at 40 time steps, (a) b = 2 and (b) b = 3.



Fig. 11. Numerical solution to the non-smooth flux problem at different time steps, (a) initial condition, (b) 50 time steps, (c) 70 time steps and (d) 100 time
steps.
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The wave propagates into the computational domain from the subsonic inflow boundary specified at the left boundary x = 0.
At the boundary the corresponding characteristic condition is used. In order to establish the sensitivity of the solution to the
choice of local Riemann invariants the problem is solved with using different choices of Riemann variables discussed in Sec-
tion 3.2.

Fig. 12(a) shows a typical solution snapshot of the local Riemann invariants, which are not consistent with entropy con-
servation for acoustic waves, (20) and (21). In these calculations, the local Riemann invariant that should propagate from
the left boundary in fact also contains some pressure wave contribution going in the opposite direction. This leads to a
spurious shift in phase and amplitude of the numerical solution (CABARET_L) in comparison with the exact solution.
The same spurious effect also occurs for the non-linear Riemann invariants (21) and (22). In contrast to these, for the
non-linear isentropic invariants (24) and (25) the numerical prediction (CABARET) almost coincides with the analytical
solution (Fig. 12(b)).
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Fig. 12. Snapshot of computed acoustic pressure fluctuation vs the analytical solution: (a) solution based on locally linearised Riemann invariants
(CABARE_L) and (b) solution based on the local Riemann invariants consistent for isentropic flows (CABARET).
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4.3.2. Acoustic wave propagation on a non-uniform grid
The initial and boundary conditions of the problem correspond to a monochromatic acoustic wave propagating in zero

mean flow field (Helmholtz problem) p0 ¼ pðx; tÞ � �p; p0=�p ¼ e sinðxt � kxÞ; k ¼ x=�c, where �p and �c are constant mean flow
pressure and sound speed, and e = 10�5.

The full system of Euler equations is solved on a uniform grid with a sudden increase of the grid spacing at the centre of
the computational domain
Fig. 13.
a unifo
linear c
xiþ1 � xi ¼ h for 0 6 x < 0:5 and xiþ1 � xi ¼ m � h for 0:5 < x 6 1: ð41Þ
The wave frequency is chosen so that the number of grid points per wavelength (ppw) Nk = 2p/(k � h) in the left part of the
domain is fixed and equal to 20. The problem is solved on a set of computational grids with the stretching parameter varying
from m = 1 to m = 3. The maximum stretching parameter corresponds to the grid resolution of Nk = 6–7.

Fig. 13 shows the comparison of the CABARET solutions with (a) and without (b) the non-linear correction procedure. The
CABARET solution with the modified correction (4e) at a = 0.001 leads to the same result as shown in Panel (b).

For all CABARET solutions, there is no spurious wave reflected from the coarse grid visible, which confirms that the meth-
od accuracy is not very sensitive to the grid singularity. It is observed that the use of the non-linear correction procedure
leads to a linear attenuation of the under-resolved high-frequency solution with distance. Either without the correction
or with the ‘‘relaxed” correction condition, the amplitude of the high-frequency solution remains well preserved.

4.3.3. Acoustic wave impinging on a contact discontinuity
The same Helmholtz wave propagation problem is considered, but this time on a uniform grid and with a contact discon-

tinuity placed in the centre of the computational domain: ð�q1; �u; �pÞ ¼ ð1;0;1Þ for x < x0; ð�q2; �u; �pÞ ¼ ðb;0;1Þ for x > x0, for
two cases b = 0.1,10.

Upstream of the contact discontinuity the solution to this problem consists of the original impinging wave plus the re-
flected wave. Downstream of the discontinuity the solution is a single refracted wave. For linearised equations, the analytical
solution is readily obtainable from the jump conditions across the discontinuity:
p0ðx; tÞ=�p ¼ e sinðxt � k1ðx� x0ÞÞ � e
1� n
1þ n

sinðxt þ k1ðx� x0ÞÞ for 0 6 x 6 x0;

p0ðx; tÞ=�p ¼ e
2n

1þ n
sinðxt � k2ðx� x0ÞÞ for x0 < x < 0:5;

n ¼
ffiffiffi
b

p
; k1 ¼ x=�c1; k2 ¼ x=�c2; x0 ¼ 0:1 and e ¼ 10�5;

ð42Þ
where �c1 and �c2 are sound speeds upstream and downstream of the discontinuity.
Fig. 14 shows the computed CABARET solutions against analytical for the dense-rarified case, b = 0.1 (a) and the rarified-

dense case, b = 10. In both calculations the acoustic wave propagating in the dense medium corresponds to a coarse grid res-
olution of about 7 points per wavelength, and for this reason the modified correction procedure of the CABARET scheme (4e)
is used with a = 0.001. In both cases the agreement with the analytical solution is excellent and we note, again, that there is
no sign of spurious reflection waves propagating from the location of the background field discontinuity.
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Snapshot of computed acoustic pressure fluctuation vs the analytical solution at cell centres for the problem of linear acoustic wave propagation on
rm flow field with a grid function discontinuity at x = 0.5 vs the analytical solution: (a) with the non-linear correction (4b) and (b) without the non-
orrection/with modified correction (4e) at a = 0.001.
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4.3.4. Propagation of a weak and strong shock wave
The propagation of a weak shock wave followed by a strong one is considered. The weak shock corresponds to the follow-

ing conditions:
ðq; u;pÞ ¼
ð1:0000133;0:0000157;1:0000186Þ if 0 < x=L < 0:1;

ð1;0;1Þ if 0:1 < x=L < 0:9; L ¼ 1;

�
ð43Þ
and the strong shock corresponds to
ðq; u;pÞ ¼
ð5:999964;894:9159;961051:5Þ if 0 < x=L < 0:1;

ð1:0000133;0:0000157;1:0000186Þ if 0:1 < x=L < 0:9; L ¼ 1:

�
ð44Þ
This test presents a challenge for standard numerical schemes based on artificial viscosity since the numerical smoothing
parameter needs to be separately adjusted for resolving the weak shock and for the computation stability in case of the
strong shock. In comparison with these the computations performed with CABARET (27)–(29) are tuneable parameter free.

Fig. 15 shows computed density and pressure change with respect to the right state of the shock, q
0
= q � qright and

p
0
= p � pright for the weak shock. The computational grid is 50 points. It can be seen that the shock front is captured within

3–4 cells. For the weak shock, the solution is found to be independent of the choice of the local Riemann invariants. Fig. 16
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Fig. 16. Computed pressure solution corresponding of the strong shock problem: (a) density and (b) pressure.
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shows results of the strong shock calculation for the same quantities as in Fig. 15. The solution (CABARET) obtained with the
non-linear isentropic invariants (24) and (25) captures the shock front within 2–3 cells and has only a slight ‘entropy trace’
upstream of the shock that is not smeared by numerical viscosity. The CABARET algorithm based on the non-linear form (22)
and (23) yields similar results. In contrast to these, the numerical solution for density based on the locally linearised invari-
ants (CABARET_L) fails upstream of the shock front (Fig. 16(b)). This suggests that retaining at least some non-linear integral
form of local invariants is important for the characteristic decomposition.

4.3.5. Strong supersonic shock-tube problem
Two supersonic shock-tube problems from [31] are considered next. The problems are modifications of the classical

supersonic [29] shock-tube test with a higher density and pressure ratio between the initial gas states:
Problem 1 : ðq; u;pÞ ¼
ð1000;0;1000Þ if 0 6 x=L < 0:3;
ð1; 0;1Þ if 0:3 < x=L 6 1; L ¼ 1;

�
ð45Þ

Problem 2 : ðq; u;pÞ ¼
ð10000;0;10000Þ for 0 6 x < 0:3;
ð1; 0;1Þ for 0:3 < x 6 1; L ¼ 1:

�
ð46Þ
According to [31], the strong expansion waves generated downstream of the shock presents a challenge for popular non-
oscillatory schemes for their velocity solution convergence in the vicinity of the shock front is very poor.

The displacement of the shock is not a local problem, but is due to smearing of the rarefaction wave, which, in turn, leads
to mass being displaced from the correct shock position because of the conservation imposed. Therefore, this test not only
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Fig. 17. Solutions of Problem 1 at a control time t = 0.15 of the CABARET scheme: (a) density and (b) velocity.
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Fig. 18. Solutions of Problem 2 at a control time t = 0.12 of the CABARET scheme: (a) density and (b) velocity.

Table 4
Convergence of the CABARET scheme for Problem 2.

N 201 401 801 1601 3201 6401 12801 25601 51201

Log(Lh
1-error) �1.025 �1.165 �1.397 �1.768 �2.349 �3.093 �3.234 �3.468 �3.727

Rate 0.464 0.770 1.233 1.929 2.471 0.467 0.776 0.862
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verifies the shock-capturing capability of the schemes but also how accurately they are able to resolve strong expansion fans
with the shock displacement being a useful indicator of the combined effect.

Figs. 17 and 18 show the computed density and velocity profiles corresponding to problem 1 and 2 for the CABARET
scheme with the locally linearised (20) and (21) (CABARET_L) and entropy-based (24) and (25) (CABARET) Riemann invari-
ants. The computational grid is 50 points. The solutions for problem 1 correspond to control time t = 0.15 and the solutions
for problem 2 correspond to t = 0.12.

It can be seen that in both cases the density solution obtained with the non-linear invariants (24) and (25) produces a
notably lesser displacement of the shock in comparison with the locally linearised form. The density field is insensitive to
the choice of local Riemann invariants for these test cases.

Table 4 shows the convergence results of the CABARET scheme in the standard Lh
1 norm based on the velocity.

Fig. 19 compares the velocity zoomed in the vicinity of the shock computed with the CABARET scheme on two grids for
problem 1 and 2 with the results obtained for the fifth-order WENO scheme [31]. As seen from the plots, the CABARET
scheme results in a lesser shock displacement on the grids which are coarser by one order of magnitude.

4.3.6. Central expansion wave test
The next test case first considered in [33] corresponds to a strong central expansion wave which fronts move at a super-

sonic speed:
ðq; u;pÞ ¼
ð1;�2;0:4Þ if 0 6 x=L < 0:5;
ð1;2; 0:4Þ if 0:5 < x=L 6 1; L ¼ 1:

�
ð47Þ
This test is particularly difficult for low dissipative schemes because of the region of low internal energy emerging in the
domain centre that leads to numerical instability. The CABARET algorithm with properly accounting for the singular sonic
point, as discussed in Appendix, leads to a stable solution. Fig. 20 shows the computed velocity (a) and internal energy profile
(b) for control time t = 0.15 by the CABARET scheme and the analytical solution. Panel (b) also shows the results for the mod-
ification of the first-order Roe flux-splitting scheme with the ‘‘entropy fix” from [27]. The number of grid points in both cases
is 100. It can be seen that in comparison to the first-order scheme, the CABARET scheme leads to a lesser spurious peak of
internal energy at the centre of expansion fan as well as to well-resolved edges of its fronts.

4.3.7. Blast wave problem
The blast wave problem [36] is considered next. At the initial time moment the computational box with reflective wall

boundaries, 0 < x < 1, is divided into three sections and each contains the same ideal gas at different initial conditions:
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ðq;u;pÞ ¼
ð1;0;1000Þ if 0 < x=L < 0:1;

ð1;0; 0:01Þ if 0:1 < x=L < 0:9;

ð1;0;100Þ if 0:9 < x=L < 1; L ¼ 1:

8><>: ð48Þ
The problem is solved on a set uniform grids with the number of cells, N, equal to 200, 300, 400, 600, 800, 1200, and 1600 and
the results are compared with several popular shock-capturing schemes from the literature. The reference solution is ob-
tained by computing the same problem at a fine grid N = 4800. All solutions correspond to control time t = 0.038. For this
problem, all forms of the local Riemann invariants of the CABARET method lead to a similar solution.

Table 5 shows the computational errors defined in the standard Lh
1 norm in density and the actual CPU costs for five dif-

ferent schemes. The notations used in the table for the methods other than CABARET are the same as in [36] and explained
below:

� MC stands for an explicit second-order MacCormack scheme with an artificial viscosity;
� ETBFCT stands for a second-order the flux-correction algorithm [2];



Table 5
The errors in L1 norm and associated CPU costs for the blast wave problem.

kDqk CPU kDqk CPU kDqk CPU kDqk CPU kDqk CPU kDqk CPU

N = 200 N = 300 N = 400 N = 600 N = 800 N = 1200

MC 0.261 1.000 0.209 2.140 0.181 3.777 0.143 8.381 0.11 14.78 0.086 33.058
ETBFCT 0.227 4.928 0.179 10.46 0.130 18.41 0.103 40.28 0.07 71.22 0.061 158.27
MUSCL 0.162 4.892 0.123 10.54 0.100 18.59 0.072 41.00 0.05 72.30 0.040 161.51
PPMDE 0.099 5.935 0.064 12.66 0.047 22.30 0.030 49.28 0.02 87.05 0.014 193.16
CABARET 0.095 1.000 0.064 2.140 0.054 3.777 0.042 8.381 0.02 14.78 0.019 33.058
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� MUSCL stands for a second-order variable extrapolation van Leer’s method [35];
� PPMDE stands for a modification of Piece-wise-Parabolic Method [4].

The CPU costs of all schemes have been normalised by the cost of the MC scheme on the grid N = 200. Because of the stencil
similarity, MC is assumed to have a similar cost to CABARET (see Table 5).

It can be seen that on the coarse grids the CABARET scheme leads to more accurate results in comparison to other
schemes, except PPMDE. However, in comparison to the latter, the CABARET scheme is about six times as fast.

Fig. 21 shows the convergence of the CABARET solution on two grids, 200 cells and 400 cells. As seen from Panel (b), start-
ing from the grid of 400 cells CABARET captures the main features of the converged solution, such as the peak density of the
expansion wave, well.
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4.3.8. Shock interaction with a density wave
The so-called Shu–Osher problem [28] is considered. A Mach number 3 shock impinges into a stationary density wave.

The initial conditions, which correspond to exact conditions upstream of the shock and the density wave downstream,
are prescribed as follows:
Table 6
Relative

N

200
400
800

1600
3200

Fig. 23.
time t =
ðq;u;pÞ ¼
ð3:857143;2:629369;10:333333Þ for x=L < 0:1;

ð1þ e sinðk � xÞ; 0;1Þ for x=L P 0:1;

�
e ¼ 0:2; k ¼ 2p=k; k=L ¼ 1

8
; x 2 ½0; L� ¼ 10:

ð49Þ
To compare with other numerical schemes, the problem is computed on five numerical grids N = 200, 400, 800, 1600, and
3200. For the CABARET scheme, the non-linear invariants (24) and (25) are used. The basic flux correction algorithm (4b),
as well as the modified correction version (4e) are tested. The solutions with the tunable parameter-free CABARET version
(4b) are considered first.

Following the literature, the numerical errors and total number of time iterations are summarized in Table 6. In the table,
WENO is the third-order Weighted Essentially Non-Oscillatory Scheme and PLIMDE is the Parabolic Interpolation Method
[4]. The total number of iterations corresponds to the number of time steps (NT) required to reach the control time moment,
t = 1.8. To be consistent with the literature, the numerical error is evaluated in the following norms:
e1 ¼
1

N þ 1

X jq� qexactj
jqexactj

; ec ¼ Max
jq� qexactj
jqexactj

� �
: ð50Þ
As follows from the table, the maximum error in the ec norm of the CABARET scheme is smallest among all three schemes,
and its error in the e1 norm decays approximately linearly for all grid densities.

Fig. 22 shows a zoom of the CABARET solution on two grids N = 200 (a) and N = 400 (b) at the control time t = 1.8 against
the reference converged solution that corresponds to N = 5000. The comparison with the reference solution on the 400-grid
is very good, however, the 200-grid solution shows some smearing of the high-frequency oscillations upstream of the shock.
To investigate the effect of the flux correction on the smearing of high-frequency structure, the same problem is calculated
with the modified correction algorithm (4e) with a = 0.01. Fig. 23 shows that the results of the CABARET solution with the
modified correction algorithm on the same grids computed at a slightly longer computational time t = 1.872. It can be seen
that all post shock oscillations, except for the first upstream high-frequency ripple, are well resolved on the coarse grid.
errors for the shock/density wave interaction problem.

PLIMDE WENO CABARET

NT e1 ec NT e1 ec NT e1 ec

250 0.0185 0.429 334 0.0214 0.902 229 0.0219 0.1211
468 0.0183 0.188 634 0.0195 0.667 462 0.0100 0.1467
903 0.0166 0.290 1235 0.0162 0.369 927 0.0058 0.2400

1774 0.0070 0.185 2443 0.0040 0.572 1856 0.0022 0.5338
3514 0.0024 0.230 4857 0.0013 0.399 3716 0.0013 0.1324
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Finally, to test the resolution capability of the CABARET algorithm with/without the flux correction modification the mod-
ified shock/turbulence interaction problem from [32] is considered. The initial conditions for this problem are given below
ðq; u;pÞ ¼
ð1:515695; 0:523346;1:80500Þ for x < �4:5;
ð1þ 0:1 sinð20pxÞ;0;1Þ for x P �4:5;

�
ð51Þ
which consists of a right-going shock wave of Mach number 1.1 impinging into a high-frequency density perturbation. The
solution is computed for t = 5. In comparison to the original Shu–Osher test case both the solution time is much longer and
the post shock oscillations are much finer in this test. Following the literature the grid is 2000 points and for the reference
solution the grid of 20,000 points is used.

Fig. 24 shows the computed density profile in comparison with the reference solution for CABARET with and without the
flux correction algorithm modification. The use of the basic flux correction (4b) leads to a gradual smearing of the high-fre-
quency ‘‘saw” upstream of the shock. A similar solution smearing effect is observed for the fourth-order WENO-FORCE and
WENO-FLIC schemes, as reported in [32]. The CABARET solution with the modified flux correction (4e) at a = 0.01 does not
show any attenuation of the high-frequency solution structure.

5. Conclusions and discussion

A new Compact Accurately Boundary-Adjusting high-REsolution Technique (CABARET) is presented for computational
fluid dynamics problems. The new method has several clear distinctions in comparison with standard high-resolution meth-
ods in the literature.

� The fluxes of CABARET are calculated independently of the conservation variables. Unlike for standard finite-difference
schemes, for the CABARET scheme the computation of fluxes does not involve any interpolation of conservation variables.
Interpolation is always a well posed operation, hence, tends to be dissipative. In CABARET this is replaced by extrapolation
which leads to low dissipation.
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� CABARET is an explicit second-order scheme with very compact computational stencil in space and time that for linear
advection is only one computational cell in space and time. The simplicity and compactness of the stencil lead to the ease
of scheme implementation near the boundaries, with non-uniform grids and a low CPU cost per time iteration.

� The compact stencil is achieved by introducing auxiliary variables staggered in space and time. The introduction of aux-
iliary variables has been used in the literature before to increase the order of approximation without extending the stencil,
e.g. in Discontinuous Galerkin methods. In comparison with these, in CABARET the auxiliary variables are introduced
through upwind extrapolation. This leads to a fully discrete scheme in space and time that has non-dissipative and
low-dispersive properties for linear wave propagation.

� For making solution non-oscillatory, CABARET uses a tuneable-parameter-free non-linear flux correction directly based on
enforcing the maximum principle on flux variables, without explicitly modifying the conservation variables. This is differ-
ent to the majority of FCT/TVD methods which use flux limiters that place bounds on the slopes of solution variation of the
conservation variables.

� For CABARET, plentiful numerical tests have demonstrated that the non-linear flux correction based on the maximum
principle leads to an accurate balance between the dispersion and dissipation errors. In this respect CABARET with
non-linear flux correction can be regarded as a new successful upgrade of the first-order Godunov scheme to second-
order. Indeed, in comparison with the latter CABARET does not only retain the original stencil compactness, low dispersion
and boundness properties of the solution but also has a very small dissipation error.

It has been demonstrated that the basic tuneable-parameter-free flux correction algorithm used in CABARET can be mod-
ified to further increase the solution accuracy by using a single tuneable parameter. For a range of linear/non-linear prob-
lems, it has been shown that the small parameter variation within 0.001–0.01 allows to accurately capture the fine
solution structure without smearing on coarse grids.

The extension of CABARET for systems of equations is based on the method of characteristic decomposition with using
local Riemann invariants. Due to the independence of flux and conservation variables the local Riemann invariants can be
introduced to emphasise additional properties of the flow equations without affecting the conservation. For example, it
has been shown that for a range of gas dynamics test cases the non-linear form of local Riemann invariants that correspond
to the full Riemann invariants for 1D isentropic flows leads to more robust and accurate results in comparison with the local
invariants based on the cell-wise linearisation.

The results presented in the paper are concerned with CABARET for 1D fluid dynamics problems. Systematic
description of CABARET extensions to multiple dimensions and higher-order approximation will be the subject of future
publications.
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Appendix A. Reconstruction of the characteristic flux vector

A.1. General procedure

Let’s define the signs of the characteristic speeds at the cell face 2 according to the interpolation rule
signðuþ cÞ ¼ signððuþ cÞC þ ðuþ cÞDÞ;
signðu� cÞ ¼ signððu� cÞC þ ðu� cÞDÞ;
signðuÞ ¼ signðuC þ uDÞ

ðA:1Þ
and use the ‘‘plus” or ‘‘minus” components of the characteristic vector that arrive in face 2 from cells C and D.
Then one of the following cases is possible:

� Subsonic flow to the right
signðuþ cÞ > 0; signðu� cÞ < 0; signðuÞ > 0; ðA:2Þ
which leads to the solution vector at the cell face
ðR2ÞT ¼ ððR1þ Þ2; ðR2�Þ2; ðR3þ Þ2Þ; ðA:3Þ
� Subsonic flow to the left
signðuþ cÞ > 0; signðu� cÞ < 0; signðuÞ < 0; ðA:4Þ
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which corresponds to
ðR2ÞT ¼ ððR1þ Þ2; ðR2�Þ2; ðR3� Þ2Þ; ðA:5Þ
� Supersonic flow to the right
signðuþ cÞ > 0; signðu� cÞ > 0; signðuÞ > 0; ðA:6Þ
and the corresponding solution vector is
ðR2ÞT ¼ ððR1þ Þ2; ðR2þÞ2; ðR3þ Þ2Þ; ðA:7Þ
� Supersonic flow to the left
signðuþ cÞ < 0; signðu� cÞ < 0; signðuÞ < 0; ðA:8Þ
which corresponds to
ðR2ÞT ¼ ððR1� Þ2; ðR2�Þ2; ðR3� Þ2Þ: ðA:9Þ
A.2. Special cases

The general procedure outlined in the previous section is modified for one of the special cases considered below.
The location of a sonic point u ± c = 0 between the left and right cells requires a separate consideration. The following sce-

narios are possible:

(i) Subsonic flow to the right in the left cell and supersonic flow to the right in the right cell
ðuþ cÞD > 0; ðu� cÞD < 0; uD > 0 and ðuþ cÞC > 0; ðu� cÞC > 0; uC > 0; ðA:10Þ
(ii) Supersonic flow to the left in the left cell and subsonic flow to the left in the right cell
ðuþ cÞD < 0; ðu� cÞD < 0; uD < 0 and ðuþ cÞC > 0; ðu� cÞC < 0; uC < 0: ðA:11Þ
From the two characteristics coming to the cell face two equations are obtained. The missing condition needed to close the
system of equations can be obtained from the second-order interpolation between the two cells
u2 ¼
1
2
ðMD þMCÞc	; MC ¼ uC=cC and MD ¼ uD=cD; ðA:12Þ
where c* = B(p2)l, B = cC � (pC)�l and l is the exponent in the definition of the local Riemann invariant.
The other special case which deserves a special treatment is the case of a centred expansion wave, which fronts move

with supersonic speeds:
ðuþ cÞD < 0; ðu� cÞD < 0; uD < 0 and ðuþ cÞC > 0; ðu� cÞC > 0; uC > 0: ðA:13Þ
In this case a simple modification of the algorithm described in (A.1) is to introduce linear dissipation in the cell which con-
tains the singular sonic point, i.e. instead of (27) use
ðRqþ Þ1 ¼
2

1þ e
ðRqÞC �

1� e
1þ e

ðRqÞ5;

ðRq� Þ2 ¼
2

1þ e
ðRqÞC �

1� e
1þ e

ðRqÞ4; q ¼ 1;2;3;
ðA:14Þ
where 0.5 < e < 1. For example in test case 4.3.6 the value e = 0.7 is used.
A standing alone case is when two characteristics ðRqþ Þ2 and ðRq� Þ2 coming to the cell face correspond to the same eigen-

value kq and there is a choice which local Riemann invariant to use for the face flux. In this case the algorithm based on the
principle of minimal variation of the conservation variable (Section 3.1) is applied
ðRqÞ2 ¼
umax if ðRqÞC � ðRqÞD < 0;
umin if ðRqÞC � ðRqÞD P 0;

�
ðA:15Þ
where
f ðuminÞ ¼ fm and f ðumaxÞ ¼ fM;

fm ¼min½ðkqÞDRqþ ; ðkqÞCRq� � and f M ¼ max½ðkqÞDRqþ ; ðkqÞCRq� �:
ðA:16Þ
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Note that in comparison to the algorithm (11) and (12) applicable to general non-linear flux functions the flux functions in
(A.16) are linear, hence, their maximum and minimum values are used.

A.3. Boundary conditions

There are five standard types of the boundary conditions for the 1D Euler equations: (i) supersonic inflow, (ii) subsonic
inflow, (iii) supersonic outflow, (iv) subsonic outflow and (v) inviscid hard wall. Assuming that the external boundary lies
between cells A and B with B being external to the flow, these are listed below:

(i) All cell-face values are specified according to the flow conditions at infinity
q2 ¼ q1; u2 ¼ u1; p2 ¼ p1: ðA:17Þ
(ii) Two incoming local Riemann invariants are extrapolated from the infinity and one outgoing is calculated from the
domain interior
ðu2 þ ADðp2Þ
l
;u2 � ACðp2Þ

l
; lnðp2 � ðq2Þ

�cÞÞ ¼ ððR1ÞD; ðR2Þ2; ðR3ÞDÞ: ðA:18Þ
(iii) All variables are calculated from the domain interior
ðu2 þ ACðp2Þ
l
;u2 � ACðp2Þ

l
; lnðp2 � ðq2Þ

�cÞÞ ¼ ððR1Þ2; ðR2Þ2; ðR3Þ2Þ: ðA:19Þ
(iv) One incoming invariant is extrapolated from the condition at infinity and the remaining local invariants are calculated
from the interior
ðu2 þ ADðp2Þ
l
;unþ1

i � ACðp2Þ
l
; lnðp2 � ðq2Þ

�cÞÞ ¼ ððR1Þ1; ðR2Þ2; ðR3Þ2Þ: ðA:20Þ
(v) The incoming Riemann variable is obtained from the condition of satisfying zero velocity on the boundary and the
entropy is updated according to the velocity sign in cell C:
u2 þ ACðp2Þ
l
; unþ1

1 � ACðp2Þ
l
; lnðp2 � ðq2Þ

�cÞ
� �

¼ ð�ðR2Þ2; ðR2Þ2; ðR3Þ2Þ; if uC 6 0 ðA:21Þ
and
ðu2 þ ACðp2Þ
l
;unþ1

1 � ACðp2Þ
l
;q2Þ ¼ ð�ðR2Þ2; ðR2Þ2;qCÞ if uC > 0: ðA:22Þ
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